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1. Introduction

In a recent paper [IJ we considered the one-loop five-graviton amplitude, h®, in type II
string theory. From its low-energy expansion we concluded that R® and V2R’ terms are
absent from the effective action, but that V4R® terms are present, where R is the Riemann
tensor. This paper considers similar amplitudes but with NS ® NS two-form potentials,
B, replacing some of the gravitons. In particular we consider the one-loop B2h® and
B*h amplitudes and expand to lowest order in /. This reveals the presence and tensor
structure of H?R3 and H%(VH)?R terms in the effective action, where H is the field
strength associated with B.

For our purposes, the low-energy effective action is a functional of the massless spec-
trum of string theory such that, even for string loops, only tree diagrams are required
to reproduce string amplitudes. This is the sense in which the famous R* correction to
supergravity, as in for example [}, should be interpreted. After expanding an amplitude
for small o/, new terms in the effective action can only be determined after diagrams due
to previously-known terms are subtracted. For example, before we can find H?R? from
the lowest-order expansion of the B2h? amplitude, it is necessary to subtract diagrams
involving quartic effective action terms, such as the (VH)2R? term.

We calculate amplitudes using the light-cone gauge GS formalism, which requires that
kT vanishes for all external states. As a consequence, there are certain terms, both in
amplitudes and in the effective action, that cannot be discovered. For example, €1p€1g



terms with fewer than two contractions between the epsilons, such as (3.13) in [f], will be
missed. Similarly, the Bh* amplitude, and hence the one-loop B A tgR* term found in H,
will not be found. However, all other terms, and in particular ejpe1g terms with at least
two contractions between the epsilons, will be seen.

The plan of this paper is as follows. In section ] we review the one-loop four-graviton
amplitude, the associated R? term in the effective action, and its extension to include
NS ® NS two-forms found in [f]]. The B?h? amplitude is calculated in section B and then
expanded to lowest-order in o/. Section [] is concerned with expanding the quartic effective
action and calculating the relevant diagrams. After these are subtracted, the remaining
terms are covariantised to discover a new tgtg H>R> term. The whole analysis is extended
to the B*h case in section [§, which results in a new tgtg H*(VH)?R term. Finally, section
pays closer attention to eg terms in the amplitudes. This shows that the tgtg in both H?R?
and H?(VH)?R should be generalised to (fsts + ge1ge1o), with +/— for IIB/ITA, where
one pair of indices is contracted between the epsilon tensors. Throughout we will often set
20/ = 1.

2. The effective action from four-point amplitudes

Before considering amplitudes for five states, we review terms in the effective action which
arise from four-particle amplitudes involving gravitons and NS ® NS two-forms. For the
case of four gravitons the one-loop amplitude is well-known to be given by [f]
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where the four gravitons have polarisations Ay , and momenta k; ,

and r ranges from 1
to 4. Here v, are the positions of the vertex operators on the torus and their integrals are
taken over the rectangular region —% < Rev < %,—%ImT < Imv < %ImT; whereas the
variable 7 parameterizes the modulus of the torus and so is integrated over a fundamental
domain of SL(2,Z). The function x,s = x(v, — vs,7) is a non-singular, doubly periodic
function of v and ¥ which is given explicitly in []. The tg tensor originates from a trace
over eight fermionic zero modes and can be written as a sum of an eg tensor and sixty 0664
tensors [f]. Often tg is defined without the eg tensor, especially when written in effective
actions, and we will clarify this issue later. However, for the four-graviton amplitude this
difference is not important since the e parts vanish by momentum conservation.

As shown in [[]—[], the integrals in (P-1) only converge for s = ¢t = u = 0 where s, t,
u are the usual four-particle Mandelstam variables defined in [I]. Even for complex values
of the momenta, the convergence is only for purely imaginary values of s, ¢ and u. The
resolution is to analytically continue from the imaginary axis to the entire complex plane.
Only then can the amplitude be shown to contain the correct massive poles and threshold
cuts demanded by unitarity.



The low-energy expansion of one-loop amplitudes can be quite involved [[[0], ], but
since we only require the expansion at lowest-order in o’ the situation is much simpler. To
find the lowest-order expansion of (B.1) we set k;, - ks to zero for all r, s giving

- d’r T 4
Applos =K | —— = =K, 2.3

anas /(Im7)2 3 (23)
where the power of o is, as throughout this paper, relative to the Einstein-Hilbert term.
It is trivial to covariantise this and find the famous tgtgR* term in the effective action. If
this one-loop term is combined with the equivalent tree-level result found in [[J]] then the
a’3 term is given in Einstein frame by

2
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where R? is shorthand for

tgl brazbaasbaasbs tgl drcadzcadscads Ral bicidy Raz bacada Ra3 bscads Ra4b404d4 ) (2'5)
and where we have fixed the normalisation for the string S-matrix so that the one-loop
term contains an extra factor of 2 relative to the tree-level term [[[J].

In the case of IIB it is possible to extend the R* term to all orders in the string coupling,
even including non-perturbative effects. It was shown in [, [ [[J] that the complete R*
action is given by o3 J dPx\/—g Z4 /2(Ts 7)R?Y, where Z; /2 is a non-holomorphic Eisenstein
series given by
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with pu(k) =3 q d=2. Here 7, which should not be confused with the modular parameter
in one-loop amplitudes, is the usual combination of the Ramond-Ramond scalar and the
dilaton, 7 = C(® 44e~¢. The expansion shows that there are no perturbative contributions
beyond one-loop, but that there are an infinite sum of single D-instanton terms, with
characteristic e/9 behaviour, which were first studied in [g].

Four-particle amplitudes containing NS ® NS two-forms were first studied in [[]. The
result is identical to (B.1) but with the relevant replacements of hqp, by By in K. Amplitudes
with an odd number of B fields trivially vanish since K changes sign under (a,,b,) <
(¢r,dy). [H], where terms involving dilatons were also studied, showed that the lowest-order
contributions to the effective action can be written exactly as in (B-4) and (2.5) but with
Rupeq everywhere replaced by

1 _ 1
Raped = Rabed + 56 ¢/2v[aHb}cd - Zg[a[cvb]vdﬂsv (2-7)



where Hg = 3V[aBbc} is the field strength associated with Bgy. This leads to various new
terms such as R*(VH)?, (VH)* and R3VV¢. The vanishing of terms involving an odd
number of H fields follows from parity.!

3. The B2h3 amplitude and its low-energy expansion

Using the light-cone gauge Green-Schwarz formalism, we now calculate similar one-loop
amplitudes but with five rather than four states. The case of five gravitons was considered
in [fl]. Here we will replace some of these gravitons by NS ® NS two-forms. It is no longer
true that amplitudes with an odd number of B fields, such as Bh*, will vanish. However,
the non-zero piece will be entirely contained in the ejgts part; the tgtg and ejpe;g terms
will still vanish. Since, as mentioned above, the ejgtg pieces cannot be seen using this
formalism, we instead choose to focus on the B2h3 and B*h cases.

The B2h? amplitude proceeds exactly as in the five-graviton case in [fl[], simply with hy
and hy replaced by By and By. Here we only sketch the calculation and refer the reader to [i]
for details. Let the two-forms have polarisations By, Bo and momenta ki, ko respectively,
and let the gravitons have polarisations hi, ha, h3 and momenta k3, k4, k5 respectively. The
two-forms differ from the gravitons in that their polarisations are antisymmetric rather
than symmetric. Both the graviton and NS ® NS two-form vertex operators are given

by [[4]

Vii(k, 2) = Cac(0X(2) — R(2)k")(0X(2) — R (2)k")e* ¥ ), (3.1)

where (yp is the polarisation and R®(z) = 15(2)4v9;SP(z). Motivated by the usual
prescription for calculating GS amplitudes, explained in [f], we consider
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where v, = Inp,/27i, 7 = Inw/27i, and the trace is over all o, &, S and S modes. The
trace over S vanishes unless there are at least eight Sy zero modes (and similarly for S)
and so there are only three types of term to consider: one term containing R®R®, ten terms
containing X R*R® or R°OX R*, and twenty-five terms containing X R*0X R*.

If we suppress the polarisation tensors and perform the traces and p-integral, then the
RPR® term can be evaluated as

Lkrkspb bs 7.d ds
/ImT /HCFWH Xrs) 25 Rk kTR R
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where, for example, t“2b2“4b4 is shorthand for tf§b2“4b4“1b1a3b3“5b5. Here t19 and #19 are ten-

index tensors, which can both be written as sums of tgd tensors, as given in the appendix

'This only applies to tsts and €1p€eip terms. Terms involving a single €19 are not forbidden, such as the
B AtgR* term found in ITA [E]



of ]. The function 7(v,s,7) can be expressed in terms of Jacobi theta functions via
7i(20 (v, 7) + 1) = =0} (v,7) /01 (v, 7). Similarly, the X (p;)R*R® term gives

k:rnk‘s b bs 7.d d
/ImT /Hd%’“H Xrs)2 kg e RgTRY - KT

r<s

x tgebe ot <Z k‘i‘fln(vrl,r)> (tcldmd2 + > et (vps, T )>, (34)

r#1 r<s

where n(v,7) = —/(v,7) + £22 — 1. Other OXR*R® terms and the R°9XR* terms are

ImT
given by similar expressions. Finally, evaluating the traces and p-integral for, for example,

dX (p1)R*DX (po) R* gives

krnks b bs 7.d1 1.d. d
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where Q(v,7) = —1/(2rIm7). Again there are similar expressions for the other
OXR*OX R* terms.

Using various identities given in the appendix of ﬂﬂ], both t19 and 1o can be eliminated
in favour of tg tensors. This allows the full amplitude to be packaged together as

ABth,tgtg Balcl Bgzcz h(11303h(21404hadcd / Im 7_ / H d2v7” H 7”8 kr.ks (36)
r<s
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where the indices on A,,, A,s and C,; have been suppressed for brevity,

_1.a2 b1.b3 17.b4 1.b5 ya1baszbzasbyasbs
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o k71 k2 k’b3 k’b4 kbr ta1a2a3b3a4b4adbr (37)
and
_ aic2 1.b2 1.b3 1.b4 1.b5 1.d1 1.d3 1.d4 1.d5 ya2b2a3b3asbsasbs yc1dicadzcadscsds

Ajs is the same as Ajp but with ¢, replacing a,. The other A,, and C,, are similar but
with the relevant permutations of the momenta and polarisation indices. The amplitude
contains massless poles in k, - ks which originate from the v,.s integral over |n(vys, T)]Q.



There is no known way of explicitly evaluating the integrals over v, and 7. However,
it is still possible to expand them for small values of /. Since we are only interested in the
expansion to lowest order, there are only two types of integral that must be considered,?

L ks O
K= / Im7)? / H d*v,. XT’S’)§kTI s Qys,
T <S
l . !
Ira :/ Im7)5 / H d*vys H Xr's ’)ril ks |777‘S|2, (3.9)

r'<s!

where Q.5 = Q(’UTS,T) and similarly for 7,s. Since Q. is independent of v,4, we write K
without any subscripts. Using the definition of Q),s, the lowest-order expansion of K is
easily found by setting &, - kg to zero for all v/, s,

1 d*r 1
Klo=—[——=——. 3.10
oo 271/(11117')2 6 (3.10)

At lowest order the expansion of I,s is a pole term and so it cannot be studied simply by

setting k,. - kg = 0. However, it is clear that the pole originates from the corner of the inte-

gration region where v, — vs. Then the pole can be extracted by writing v,s = |v]e? and

integrating over a small circle around v,.; = 0. From the small v behaviour of x,s and 7;s,
i

X(U7T) ~ 27T|U|7 77(’077_) ~ _%7 (311)

it can easily be shown that in the small k, - kg limit,

1 1 1]€"k’.
fro k‘r-ks?/ Tm 7)o /Hd Uy 1:[ (s )25, (3.12)
S
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where the prime on the product indicates that (r’,s’) = (1,2) is not to be included, and
1 — 2 means that vy/ is to be replaced by vy everywhere within the product. The 7 and
v, integrals are exactly those that appear in the four-graviton amplitude (R.1)), which of
course must be the case from unitarity, and so their low-energy expansion begins with 7/3

as in (E), giving

1
Loglyy-1 = ——— 3.13
T’S’OL 1 6@’]{77‘ . ks7 ( )
where o has been reinstated using 2o/ = 1. So the lowest-order expansion of the
amplitude (B.6) is given by
2%, 2 31 312 13 2
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where again we have reinstated o’.

2The other possible integrals all vanish at lowest order in o’.



Unlike the five-graviton version in [, various terms within the |A13|?, |A1,|? and | A, |?
parts, with n = 3,4, 5, vanish due to identities such as kfki’BQab =0 and behlab = 0. For
example, of the twenty-one terms in |A,|%, only fifteen survive in the |A2|? part,

1
k1 - ko

( — 2k kR BY k] BST — 2k kY BY k] kGBS — 2k kY kS B kS By
— 2k k' B kI KY BST — 2k B kI KS kS BST — 2k ok BY kS kS By

+ 2kP K By o kS RS B + 2k By p kS kB RS BSY 4+ KO ES By kS kS B )
+< — 2k k0 BRI BSM — 2k B KD BSH 4 2kY By ¢ kS BI
c11.e1.b1 paid; al c11.b1 pedy aici .e pbidy
+ 2By kSES BO 4 219 By kGBS + y BRURS BY > (3.15)

which is all multiplied by 2297 ¢g b 18 oydy .. kS22 A2 k3 k53 pbae g o plads - Similarly,

for the |A13]? part only seventeen terms remain,

1
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which is all multiplied by 282 ¢g, 4, .t cra,.. kS2 kS BE22 kS kG2 h2% k84 | p51% | These ex-

pressions will be important for matching with the field theory diagrams in the next section.

4. Consequences for the effective action

The expanded amplitude in (B.14) can now be compared with the same amplitude calcu-
lated from known quartic terms in the effective action, such as R* and R?(VH)?. These
terms, however, will not account for the full amplitude, and the remainder will require new
H?R3 terms.

At lowest order the effective action consists of the usual supergravity terms, which in
Einstein frame are given by

S0 = / d"z/—g <R - 1—126—¢H2 — %(8(15)2). (4.1)

Einstein frame is used to avoid mixing between the dilaton and graviton propagators. It
is important to include the dilaton since there are diagrams where a dilaton propagates as



an intermediate particle. As mentioned in section [, the first correction to S,0 occurs at
order o3. For our purposes, only the one-loop correction is relevant,

o2

Sa'371—10013 - 7a/3/d10x -9 e?/? tglblmtgldl“.Ralblcldl o Ragbyeadss (4.2)

where Rgpeq is given in (B77). In particular, for matching with the B2h® amplitude, only
the tgtg R, tgts R?(VH)? and tgtgR3(VV¢) terms are required.

4.1 Expansion of various tensors

Before we can expand the terms in S,0 and S.s3, we need the expansions of the various
fields and tensors involved. Consider a small fluctuation of the metric about the Minkowski
metric, gop = Nap + Khap, Where k is presumed small. In subsequent expressions we will drop
factors of x since they can easily be reinstated. The expansions of the Riemann tensor, the
Ricci scalar and the tg tensor were given in [ and we refer the reader there for details.

At most we require the expansion of the Riemann tensor, Rp.q, to second order in h. As
explained in [, since we are only concerned with five-point amplitudes, a Riemann tensor
expanded to second order is guaranteed to be multiplied by a tensor which is antisymmetric
in a < b and ¢ < d, and symmetric in (a, b) < (¢, d). With this understanding, the
expansion to second order simplifies to

1
Roped = 204,0:hpg + 8ahceadhbe + 8ahceabhde — 286hacabhde + §8ehacaehbd. (4.3)
The expansion of the Ricci scalar begins
R =0h — 0,0,h®
— h“b(Dhab + 0,0ph — 20,0hpe)
3 1 1
- Zaahbcaahbc + gaahbcabhfw + 0%hap0hbe — 0%hapd°h + 70" hah, (4.4)
where h = h%,. Although we actually need the expansion to third order in A, we do not
need the explicit expression and so there is no need to write it here.
Since the tg tensor is formed from products of the metric, it is important to also consider
its expansion. As for the Riemann tensor, since whenever tg is expanded to first order it is

always multiplied by tensors which are symmetric under, for example, (a, b) < (¢, d), the
expansion reduces to

tgbcdefgh _ tgbcdefgh o Z(hiazébcdefgh + hibigicdefgh)’ (45)

where tg is formed out of products of the curved metric, g, and tg is the equivalent expression
formed out of the Minkowski metric, 7.
The expansion of H? is achieved using

H? = ¢"g" g HopeHyep = 3°9°9" 9/ V 14 By ViaBe gy (4.6)



and remembering that it is also necessary to expand the covariant derivatives. It is readily
found that, up to first order in h,

2H? = 9, Byc(0"B" + 20" B™)
— (9, Bpo0g B — 40, Byo0" By + 203 Bo.0"By¢ — 203 Bac0°By"). (4.7)

Since we need the expansion of S, up to terms involving five fields, we require the
expansion of V(o Hy.4 up to first order in h. The zeroth order contribution is trivial and the
first order terms originate from expanding the Christoffel symbols within the derivative.
When V,Hy.q is expanded to first order it is assured of being multiplied by an expression
which is manifestly antisymmetric in a < b, antisymmetric in ¢ < d, and antisymmetric
in (a,b) < (c,d).> With the understanding that V(o Hp)q is multiplied by a tensor with
such symmetries, the expansion simplifies and, up to first order in h, can be written as

1

§v[aHb]cd = 8aachb + 8ahcead-Bbe + aahceab-Bed

1
- 86hacabBed - aahceaeBbd + §8ehacaeBbda (48)

which, although similar to the expansion of the Riemann tensor, differs due to the different
symmetries of hy, and By, and the missing factor of two in the zeroth order term.

4.2 Propagators

From ([.1]) we can derive the propagators for the graviton, the NS® NS two-form and the
dilaton. Since the dilaton is a scalar, its propagator is simply D = 1/k?. For the graviton
we consider the Einstein-Hilbert term which, after dropping total derivatives, is given up
to second order by,

1
Sav.r =7 / A2 (8uhped R — 0,70 h + 20,hdph™ — 20, hyO°h), (4.9)
which is invariant under the gauge transformation

hap — hap + 0alp + OpCa, (4.10)

where (, is an arbitrary one-form field. After fixing the gauge invariance using the de
Donder gauge, 9%hgp, = %&)h, the graviton propagator can easily be shown to be

Naclbd + NadMbe — inabﬁcd
k2 '

Dabed = (4.11)

To find the propagator for the two-form we first fix the gauge invariance, By, —
Bap + V4G, by adding the gauge fixing term A0, B9, B?, to the action. Then, after
removing a total derivative, the part of ([.1)) quadratic in B,, becomes

1
San,z = =5 / d'02(0, Bpe0* B* — 2By.0,0° B 4 24\B%0,0,B"..). (4.12)

3This antisymmetry follows since, from the Bianchi identity, ViaHyjea = =V cHgjap-
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Figure 1: Field theory vertices relevant for the B2h3 amplitude. From left to right: a three-vertex
from R, two three-vertices from e~ ?H?2, and three four-vertices and a five-vertex from R*.

Now we write the integrand as Bg,V®“B,; and try to invert V% by which we mean
solve ng’ chCde F = Nale|My) - This can only be achieved for the particular choice A = —%,

after which we find

;b,cd _ Naclbd k_2 Nadbe ' (413)

4.3 Evaluation of diagrams

The expansions of S0 and S, lead to several three-, four- and five-vertices which appear
in B?h? diagrams. Firstly, the Einstein-Hilbert term contains the usual three-graviton
vertex. Further, the kinetic term for the NS ® NS two-form, e ?H? = H?> — ¢H? + ...,
gives a BBh three-vertex from the expansion of the first term, and a BB¢ three-vertex from
the second term. The quartic one-loop term, S.3, leads to three relevant four-vertices: a
four-graviton vertex, a three-graviton and one-dilaton vertex, and a two-graviton and two-
B-field vertex. Finally, the R?(VH)? term in S,s generates a BBhhh five-vertex. These
vertices are shown in figure [l where a vertex surrounded by a circle originates from the one-
loop S, term, whereas a vertex without a circle originates from the tree-level S0 term.

Unlike the five-graviton amplitude in [[] where there were only two field theory dia-
grams to calculate, there are now five separate diagrams to evaluate (figure fl). Diagrams
(a) and (b) both contain internal states carrying momenta /—2k; - k2, the first with an
intermediate graviton and the second with an intermediate dilaton. Diagrams (c) and (d)
are similar: the first contains an intermediate B-field carrying momenta v/—2k, - k; and the
second contains an intermediate graviton carrying momenta /—2k; - kg, where r € {1,2}
and s,s’ € {3,4,5}. Diagram (e) is a contact diagram formed from a single five-vertex.
All these diagrams must be evaluated and subtracted from the B?h? amplitude, before the

remaining terms can be covariantised.

Diagram (a) consists of a BBh three-vertex connected via a graviton propagator to a
four-graviton one-loop vertex and can be evaluated as follows. The three-vertex is found
from ([£.7) and first must be contracted into the two on-shell B-fields, B and Bs. The two
free indices are then contracted with the graviton propagator (f.11), before multiplying by
the four-graviton vertex derived from tgtg R*. Finally, the remaining external legs contract

— 10 —
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Figure 2: Field theory diagrams contributing to the B?h3 amplitude.

into the three gravitons, hs, hy and hs. After some work, the result simplifies to

h
BN\ h _ az 1.c2 pbadz 1.a31.c3 7 b3ds 1,04 1.c4 7 bady
P = byt SRS KRN KRS,

1
X ( T ( — 2k1 kR By k] BST — 2k kY By k] kS BST

— 2k kYR B kS By — 2k ok B kDK B
— 2k B RS kS BT — 2k kS B (kS kg By
+ 2kD K By sk kS BSY 2k By kY kD kS BSY
+ kS B skl k$ BE

3 e
= 7 (ko ko) (ky + k2) e By 1ok B nb1d1>

+ (k1 + k2) (k1 + k2)! <QBle(dlBgl)e + gBlefB;fnblch)), (4.14)

where all terms apart from those in the last line are poles. The penultimate line is a pole
containing an n® factor. Since there are no such terms in the B2h* amplitude, this must
cancel with an equivalent term from another diagram.

Diagram (b) is similar in spirit to diagram (a), but with a dilaton as the intermediate
particle. As such, the simpler dilaton propagator is used to contract the two vertices. The
three-vertex now originates from the ¢H? term in S,o0. The diagram is easily evaluated as

h
BN ¢ _ a2 1.c2 3 bad2 1,03 1.c37b3d3 j.a47.c4 7 bady
D = s aip ey R§RSIT RE RPN KRS

3
4k - ko

e 3 e
(k1 + ko)™ (ky + ko) ( k1eBi gk BI¢ — §316f32f> . (4.15)

The pole term has exactly the correct form to cancel the pole containing n? in the previous
diagram, and the second term exactly cancels the final term in (4.14). So the sum of
diagrams (a) and (b) is given by ([E14), but without the two terms containing 7 factors.

— 11 -



Diagram (c) accounts for the poles where a B-field and a graviton are separated from
the other particles. Consider the particular case where the separated B-field is By with
momentum k; and the separated graviton is A1 with momentum k3. We start from the BBh
three-vertex given by ({.4) and contract By and h; into two of the legs. The remaining
leg is now connected by the two-form propagator (f£1J) to a B?h? four-vertex from the
expansion of tgtgR*. Finally, the remaining three legs are contracted into Bs, ho and hs.
After simplifying the result we obtain

B
h>LFh _ t t kag kCQ Bb2d2 kag kcshbSdS ka4 kC4 hb4d4
B ™= 8aiby---t8cidy g g 2 4 g b2 5 v5 '3

1
(e (kg B0 4 2 B0 )
1°h3
— 2k1 kR B R RS — 2k ok B k] kS RS
— 2k1 kS B kGRS Rk p BY O RS kGRS
— 2k kB R KSR — 2k B KRS kGRS
— 2k ok By RS R RS + 2K K B gk ksh
+ 2k By kS kS kSR >
+ 2(ky + k3)® (k1 + k3)™! Ble[dl hlljl]e>. (4.16)

Diagram (d) is almost identical to the pole diagram calculated in [f[], which itself was
derived from a similar amplitude in [[[7, the only difference being the four-vertex. This
difference, however, is minimal since Rgpeq and V|, Hyq expanded to lowest order both
have the form 20,0.X g, where X is h and B respectively. As such, we can simply take the
result in [[l] and replace the relevant gravitons by B-fields. Let the two gravitons which are
to the left of the propagator be iy and he with momenta k3 and k4 respectively. Then

B
h\_h _ a2 1.c2 pbada 1.a37.c3 Rbads j.a47.c4 7 bady
e =t ayinetscuds K2R B SRS B KRS S

x ( - 1k <+ kacks kS kS R RS 4 2kes ks p kS Rk pE
34

— kg kS kG RS RS — 2kack B kK RS
— kg kG A kST + Rgoks gt kY K R
— kg k§ B kLRGBS — 2k bt k] kS RS
— 2hgckS§ RS KRGS+ KRS hae pkh] gt
o 2K5 by kS kL KT RS 4 205 S by p kD kGRS
o hep kR RS RS 4 2K ha o p kK RSRG
RS kS hep KD KD RS )

+ 2(ks + kqa)* (ks + l<34)c1 hle(dl hgl)e> . (4.17)
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Finally we calculate diagram (e), which involves expanding the R*(VH)? term from
the one-loop S,» action,

/ A2/ =gt GV (g Hyy ey, V(g Hogleads Rasbsesds Rasbacads,  (4:18)

to third order in h and contracting all legs into the on-shell external states. Since at
lowest order S,/s contains two gravitons, it is necessary to expand to one order higher than
leading-order. The fifth graviton cannot originate from /—¢g ~ 1+ %h“a since the external
gravitons are traceless. However, it can originate either from a tg tensor, from a Riemann
tensor or from a Vi, Hy.q factor. After a slightly involved calculation which uses ([£.9), (£3)
and (E.§), we find

o = 250yt tcray - KE RS B KRR kGGG
x ( + B BY RSURS + BBy NGRS — KBy, T RSh
— ky BRI g p§re %kzleBi’ldl kShaTet — ke kS BUrdr pge
— K kS By ™ hlfle>
+ 2 g 0y b ey dy o KO RS2 BR292 33 kS3 Bhads 04 pea pbada
x < + EGUR K§V RS + kS hy PRGBS — KSRy P RGRG
— E3o WP BB RS 4 %k‘gehl{ldl kSha' ! — k3 kS A1 pore
— kS S hy RS — B K RS R h‘flekjkjjlhglcl>
+ all permutations of (Bi, Bg) and of (hy, hg, hs). (4.19)

4.4 New H2R? terms

All the above diagrams need to be subtracted from (B.14), before the remainder can be
covariantised to discover new H?R? terms. The matching of the pole terms is guaranteed
from unitarity and indeed it is readily seen that the poles in the sum of ({.14) and ({.15)
match with the poles in (B.15), that the poles in (f.1§) match with the poles in (B.1§), and
that the poles in (f.17) match with the poles in the |A,¢|? part of (B.14) for r, s = 3,4, 5.

This leaves the non-poles. In the amplitude these arise from both the |Am|2 and Cig
terms. In the field theory they originate from both the non-pole terms in diagrams (a) to
(d) and from the entirety of the contact diagram. Consider first terms where two gravitons
are singled out. As explained in [, it is always possible to single out such terms even
for the non-poles. Then the non-poles in (B.14]) can easily be seen to match the non-poles
from ({.17) and the second half of (f.19). The matching is practically identical to that for
the lowest-order expansion of the five-graviton amplitude in [fl].

Next consider terms where a B-field and a graviton are singled out. For concreteness
assume B and hp to be the separated fields. Then we need to compare the final two lines
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in (B.16) and the Cj3 term with the final line in ({.16) and the first half of ({.19). After
doing so, not all terms cancel; the remainder are given by

218 ayby -8 crdy - Ko kS B P kK RSB RS KE RS ( By @ khS W' — By k5 kS h{e).
(4.20)
Such terms are potentially problematic since they cannot be covariantised into new effective
action terms. An attempt to do so would generate terms of the form tgtgs B(VH)R3, but
such terms cannot appear since they are not gauge-invariant. So there must be a mechanism
whereby these extra terms cancel against other terms.

Finally consider terms where the two B-fields are singled out. This involves comparing
the final two lines in (B.15) and the Cj5 term with the penultimate term in ([.14); the con-
tact diagram ({.19) now makes no contribution. After cancelling the field theory diagrams,
the remaining terms are given by

a2 7.¢2 1.bads 7.a3 7.¢3 1.b3d3 7.04 7.C4 1. b4d4
2t8 ayby--t8erdy Ky k3 hy* kg ki hy’ P kst kgt hg
c11.e1.b1 paidy a1 1.b1 1.d1 peie b1 paici pedy
X <+Ble k72k‘2 B2 — B, k’z k‘2 B2 — klekl Bl B2
_ kll’l k.flil Bp.“ B;le _ klerlcl k‘gl B;dl + k.fln B1eclk§B§“d1

1
+ B B kY BSt — B By S BS© + Shie By k§B§1d1>. (4.21)

Not all of these terms can be generated from new terms in the effective action: those terms
with ‘naked’ B-fields, i.e. those without any momenta multiplying them such as the Bj in
the first term, cannot be covariantised in a gauge-invariant manner. The resolution is that
the first four terms in ([£2])) and the two terms in (f20) actually cancel when summed
over all permutations of the external states. The proof of this uses an identity between
four 19 tensors which is shown in the appendix of [l]. Consider

TABai1biasboazbzasby T ABasboaibiazbzasby T ABasbzaibiasbaasby T ABagbsa1biasbsaaszbs
(tio + 10 + 110 +t0 )
c1dycadacsdscad
X tgl 16202030 4BlABk72a1 k261B2b1d1 k3a2]€302h1b2d2k4a3k463h2b3d3k5a4k564h3b4d47 (422)

which vanishes due to identity (A.4) in [[[]. By expanding each of the #;( tensors as a sum
of four tg tensors as in (A.2) in [I], it is easy to show that this gives the first two terms
in (f:21) and the two terms in (.20) summed over all permutations of the gravitons. The
final two ‘naked’ B-terms in ([..21)) cancel with the By « By equivalent of ({.2(), which is
shown by considering the above identity but with B; and Bs interchanged.

This leaves the final five terms in ({.21)) and we can now ask what term or terms in

the effective action might give rise to them. By considering

13 10 ai1biasboaszbsasby yc1dicodacsdscyd. e
a /d T/ —g gt TRl QRBBUN T reHydy “Ragbocads Rasbyesds Rasbscads

(4.23)
it is easy to see that, at lowest order in h, exactly these five extra terms are generated and
this then is our required new term to account for the B>h? one-loop amplitude.

This term agrees with the conjecture in [I§] (see their (2.11)), but disagrees with
the covariant RNS calculation in [J], where it is claimed that the tstg part of the H2R3
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Figure 3: Field theory diagrams contributing to the B*h amplitude: (a)-(c) pole diagrams, and
(d) a contact diagram.

term is as above but with the H? part replaced by Hg peHeyq, . We believe the difference
arises because [, as indeed acknowledged there, makes no attempt to subtract field theory
diagrams due to known quartic terms in the effective action. It is also worth noting that

our result disagrees with the light-cone gauge GS calculation in [LI9].

5. The B*h amplitude

It is relatively straightforward to extend the whole of the previous analysis to the B*h
amplitude. In calculating the B2h3 amplitude in section [} (and in the five-graviton case
in [[l]) at most two vertex operators give X and 9X® terms, with the remaining three
operators giving R®kbRedkd factors. These three factors simply lead to kpkqXae factors
in the amplitude, where X is either h or B, and so the difference between B2h® and B*h
is minimal. Let the four NS ® NS two-forms be By, By, B3, B4 with momenta k1, ko,
ks, k4 respectively, and let the graviton be labelled h; and have momentum k5. Then
the B*h amplitude is given by (B-6) but with h'h2h3 replaced by B3B*h!. Similarly, the
lowest-order expansion is given by the same replacement in (B.14).

There is also little difference between the effective action diagrams for B?h3 and B*h.
This follows since, as explained in [f[], all diagrams, even the contact diagram, contain
exactly two particles which play a privileged role. The remainder merely act as spectators,
appearing as Rgped or V[, Hy)eq factors expanded to leading order. So there is little point
explicitly evaluating the new diagrams. However, for completeness, the relevant diagrams
are shown in figure [| where several new vertices are required: the four-vertex from the
lowest-order expansion of the (VH)* term in ([.2), the equivalent vertex from the Rp(V H)?
term, and the five-vertex from the expansion of (VH)* to first order in h.

The poles in all channels match in an identical manner to that for the B2h? case and
the ‘naked’ B-fields cancel using the same 1y identity. This leaves the same five kBkB
terms as for B?h3, but now with two of the k,k.hpq factors replaced by kykeByg. So the
new term required in the effective action is given by

0/3/dlox\/__gtglb1a262a3b3a4b4t§1d102d203d304d4

X HayeyeHyydy “V ag Hpglends V a3 Hos)esds Rasbacada - (5.1)

It is notable that, as in [f] where the quartic effective action including B-fields was
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written by generalising R* to R*, we can write both the H2R3 and H*R terms as

13 10 a1by-raqbg ye1dy-cqd
« /d T/ _gtgl r 4t81 re 4HalcleHb1d1eRangczdzRagbacadaRa4b4C4d4’ (5'2)

where

_ 1 _
Raped = Rabed + 56 ¢/2V[aHb]cd' (5.3)
In fact, as in (P.7), [{] also includes an additional term in Rgp.q which involves the dilaton.
It is interesting to conjecture that the same may also be true here. This predicts various new
terms, such as H2R?(VV¢) and H*(VV¢)3. To confirm such terms it would be necessary
to calculate five-particle amplitudes involving dilatons, such as the B?h%¢ amplitude.

6. The egeg terms

So far we have only considered tg tensors, where tg is formed out of products of delta

symbols [f] and which originate from a trace over four RE® tensors. This trace, however,
also contains an eg tensor,

1 1
Tr(R§RE' Ry RY') = 5e" 1" — Zgecahoeosih ...

9 8
1
Eigegbcdefgh_‘_tgbcdefgh’ (61)

with the + sign depending on the SO(8) chirality. Although momentum conservation
requires all terms involving eg to vanish in massless NS ® NS four-point amplitudes, this
is no longer the case for amplitudes involving five states. This leads to various terms in
the effective action such as ejpeioR* and B A tgR*. Since the GS light-cone formalism
requires kT = 0 for all external states, the B A tgR* term will not be visible. However,
terms with at least two contractions between the epsilon tensors should be visible. The
€10€10R* term was studied in []; here we study equivalent terms involving B-fields, such
as 610610(VH)2R2 and 610610H2R3.

All tg factors in the B?h3 amplitude originate from a trace over four RSb and so €g terms
can be included simply by replacing tg by (B.1)). Since the identities used to reach (B.4)
continue to hold for the eg terms [f[], the final amplitude expanded to lowest order is given
by (B.14) but with every occurrence of tg in (B.7) and (B.§) replaced by %68 +t3. As a
consequence of the greater antisymmetry of eg, all but the final line of A, vanish and so
the eg parts of the amplitude contain no massless poles.

In addition to the tgtg terms studied above, the full amplitude now contains tgeg and
egeg terms. The tgeg must vanish since they do not respect the parities of either the ITA
or IIB theory. For the five-graviton amplitude at lowest order in o’ this was demonstrated
explicitly in [f[]; the equivalent statement for B2h3 can be shown in an identical manner. So
the full amplitude reduces to (tstg %egeg) multiplied by the usual kinematic factors and
integrals, with +/— for IIB/ITA respectively. As discussed in [, this calculation appears
to give the wrong sign for the egeg terms, as can be seen by comparing with the known
e10€10R? term in the effective action. We leave this issue unresolved and instead conjecture
that +/— should refer to ITA /IIB.
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As with the tgtg terms, before any ejge;gH2R? can be determined it is important to
subtract diagrams due to quartic terms in the effective action. For the pure Riemann term
it is known that the one-loop tgtgR* should be extended to

1
a3 / dz —g e%¢ <t8t8 + §610€10> R4, (6.2)

with +/— for IIB/IIA respectively [R0, RT]. It is natural to conjecture that the tgtg R* term
in ({£.J) is extended in a similar way to (tsts + %610610)]?4, giving the new terms

1, _
3 10 ai1brasboaszbsasbys mncidicadacsdscad
iga AT =9 €10 Pt 4610 PR R bierd; + Ragbseads- (6.3)

The following analysis will confirm this for a subset of these terms, including ejge1o(VH)*
and 610610R2(VH)2.

The expansion of (f.3) around Minkowski space proceeds exactly as in section []. The
only new ingredient is the expansion of the ejpeio factor. As shown in [, with the under-
standing that ejge1g is always multiplied by a tensor which is symmetric under the inter-
change of pairs of adjacent indices, i.e. under (a,,b,) <> (as, bs), then to first order in h,

a1by---aqb mncidy---cad a1by-agby _cidy--cqd
€10mn 101---a4 4610 1dy-cadg _2§81 1004 4§81 1---C4dy (64)

ib1---aqab dy--cad i-aub dy-cad
_|_8(hia1§281 a4 4§§1 1--cada "‘hiblﬁg” a4 4§g1 1o 4)'

Here €19€19 are ‘curved’ epsilon tensors which can be rewritten as a sum of products of the
metric g, and egeg are ‘flat’ epsilon tensors which can be rewritten using flat metrics 7.

Due to the extra antisymmetry of the epsilon tensor, the four-vertex from (p.3) vanishes
and, as a consequence, the ejge1g-equivalents of diagrams E(a)—(d) all vanish, leaving only
diagram fJ(e). This tallies with the lack of massless poles in the egeg part of the amplitude.
However, since the expansion of €1ge1g is so similar to the expansion of tgtg, it is prudent
to ignore this fact. Then the subtraction of the field theory diagrams from the amplitude
proceeds exactly as for the tgtg terms.

After subtracting all diagrams and again using (f.23), but with ¢ replaced by e,
it is the same five terms in the egeg-equivalent of ([.21]) which remain, leading to two
conclusions. Firstly, since the field theory diagrams which must be subtracted involve the
egegs BBhh and egeghhhe vertices, we confirm the presence of both the ejge1gR?(VH)? and
10610 R3¢ terms of (B.J). Secondly, analogous to (f29), it is necessary to add the term

L,
3 10 a1biasboaszbsasbys mmneidicadacsdscady
+ goz AT~ 9 €10 mn €10

X HalcleHbldl eRagbzcgdg Ra3b3cgd3Ra4b4C4d4 ; (65)

where, as mentioned above, we switch the signs so that +/— applies to IIB/ITA respectively.
Since this has the same structure as the tgtg H2R> term, the full H?R3 term can be written
as the combination

1
O/g/dlol‘\/—g <7f87f8 + 5610610> H2R3, (6.6)
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where H2R? is shorthand for the above tensor contractions. This mirrors the usual tgtgR*
term, which is similarly generalised to (tgtg + %610610)R4.

The eg terms for the Bh* amplitude work in an almost identical manner. The field
theory diagrams now contain two new vertices, the eges BBBB and egeshB B¢ vertices.
From these we can confirm the presence of both the ejge;o(VH)?* and eygeroR(VH )%
terms of (6.3). Further, the tsts H?(VH)?R term needs to be supplemented by

L,
3 10 ai1biasboaszbsasbys _mneidicadacsdscady

X HalcleHblch ev[ag Hbg}czdz v[agHb3}03d3Ra4b4C4d47 (67)

and so, as with H2R?, the full H*(VH)?R term packages together as o/ [ d'9z\/=g (tsts+
%610610)H2(VH)2R.

As mentioned in section [, it is again notable that the full H2R3 and H?(V H)?R terms
can both be written succinctly as the single term

13 10 a1byagbyyc1dycqdy 1 a1b1---agbs _mncidy--cady
a /d v—Y (ts ts + g€10mn €10 >

X HalcleHbldleRazbgczdgRa3b3C3d3Ra4b4C4d47 (68)
with R given in (p.J).
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