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1. Introduction

In a recent paper [1] we considered the one-loop five-graviton amplitude, h5, in type II

string theory. From its low-energy expansion we concluded that R5 and ∇2R5 terms are

absent from the effective action, but that ∇4R5 terms are present, where R is the Riemann

tensor. This paper considers similar amplitudes but with NS ⊗ NS two-form potentials,

B, replacing some of the gravitons. In particular we consider the one-loop B2h3 and

B4h amplitudes and expand to lowest order in α′. This reveals the presence and tensor

structure of H2R3 and H2(∇H)2R terms in the effective action, where H is the field

strength associated with B.

For our purposes, the low-energy effective action is a functional of the massless spec-

trum of string theory such that, even for string loops, only tree diagrams are required

to reproduce string amplitudes. This is the sense in which the famous R4 correction to

supergravity, as in for example [2], should be interpreted. After expanding an amplitude

for small α′, new terms in the effective action can only be determined after diagrams due

to previously-known terms are subtracted. For example, before we can find H2R3 from

the lowest-order expansion of the B2h3 amplitude, it is necessary to subtract diagrams

involving quartic effective action terms, such as the (∇H)2R2 term.

We calculate amplitudes using the light-cone gauge GS formalism, which requires that

k+ vanishes for all external states. As a consequence, there are certain terms, both in

amplitudes and in the effective action, that cannot be discovered. For example, ǫ10ǫ10
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terms with fewer than two contractions between the epsilons, such as (3.13) in [3], will be

missed. Similarly, the Bh4 amplitude, and hence the one-loop B ∧ t8R
4 term found in [4],

will not be found. However, all other terms, and in particular ǫ10ǫ10 terms with at least

two contractions between the epsilons, will be seen.

The plan of this paper is as follows. In section 2 we review the one-loop four-graviton

amplitude, the associated R4 term in the effective action, and its extension to include

NS ⊗NS two-forms found in [5]. The B2h3 amplitude is calculated in section 3 and then

expanded to lowest-order in α′. Section 4 is concerned with expanding the quartic effective

action and calculating the relevant diagrams. After these are subtracted, the remaining

terms are covariantised to discover a new t8t8H
2R3 term. The whole analysis is extended

to the B4h case in section 5, which results in a new t8t8H
2(∇H)2R term. Finally, section 6

pays closer attention to ǫ8 terms in the amplitudes. This shows that the t8t8 in both H2R3

and H2(∇H)2R should be generalised to (t8t8 ± 1
8ǫ10ǫ10), with +/− for IIB/IIA, where

one pair of indices is contracted between the epsilon tensors. Throughout we will often set

2α′ = 1.

2. The effective action from four-point amplitudes

Before considering amplitudes for five states, we review terms in the effective action which

arise from four-particle amplitudes involving gravitons and NS ⊗ NS two-forms. For the

case of four gravitons the one-loop amplitude is well-known to be given by [6]

A4h = K̂

∫

d2τ

(Im τ)5

∫ 3
∏

r=1

d2vr

∏

r<s

(χrs)
1
2
kr·ks , (2.1)

with

K̂ = ta1b1···a4b4
8 tc1d1···c4d4

8 k1
a1

k1
c1h

1
b1d1

k2
a2

k2
c2h

2
b2d2

k3
a3

k3
c3h

3
b3d3

k4
a4

k4
c4h

4
b4d4

, (2.2)

where the four gravitons have polarisations hr
arbr

and momenta kr
ar

, and r ranges from 1

to 4. Here vr are the positions of the vertex operators on the torus and their integrals are

taken over the rectangular region −1
2 < Rev ≤ 1

2 ,−1
2Im τ < Im v ≤ 1

2Im τ ; whereas the

variable τ parameterizes the modulus of the torus and so is integrated over a fundamental

domain of SL(2, Z). The function χrs ≡ χ(vr − vs, τ) is a non-singular, doubly periodic

function of v and v̄ which is given explicitly in [6]. The t8 tensor originates from a trace

over eight fermionic zero modes and can be written as a sum of an ǫ8 tensor and sixty δδδδ

tensors [6]. Often t8 is defined without the ǫ8 tensor, especially when written in effective

actions, and we will clarify this issue later. However, for the four-graviton amplitude this

difference is not important since the ǫ parts vanish by momentum conservation.

As shown in [7 – 9], the integrals in (2.1) only converge for s = t = u = 0 where s, t,

u are the usual four-particle Mandelstam variables defined in [1]. Even for complex values

of the momenta, the convergence is only for purely imaginary values of s, t and u. The

resolution is to analytically continue from the imaginary axis to the entire complex plane.

Only then can the amplitude be shown to contain the correct massive poles and threshold

cuts demanded by unitarity.
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The low-energy expansion of one-loop amplitudes can be quite involved [10, 1], but

since we only require the expansion at lowest-order in α′ the situation is much simpler. To

find the lowest-order expansion of (2.1) we set kr · ks to zero for all r, s giving

A4h|α′3 = K̂

∫

d2τ

(Im τ)2
=

π

3
K̂, (2.3)

where the power of α′ is, as throughout this paper, relative to the Einstein-Hilbert term.

It is trivial to covariantise this and find the famous t8t8R
4 term in the effective action. If

this one-loop term is combined with the equivalent tree-level result found in [11] then the

α′3 term is given in Einstein frame by

α′3

∫

d10x
√−g

(

2ζ(3)e−3φ/2 +
2π2

3
eφ/2

)

R4, (2.4)

where R4 is shorthand for

ta1b1a2b2a3b3a4b4
8 tc1d1c2d2c3d3c4d4

8 Ra1b1c1d1Ra2b2c2d2Ra3b3c3d3Ra4b4c4d4 , (2.5)

and where we have fixed the normalisation for the string S-matrix so that the one-loop

term contains an extra factor of 2π relative to the tree-level term [12].

In the case of IIB it is possible to extend the R4 term to all orders in the string coupling,

even including non-perturbative effects. It was shown in [2, 13 – 15] that the complete R4

action is given by α′3
∫

d10x
√−g Z3/2(τ, τ̄ )R4, where Z3/2 is a non-holomorphic Eisenstein

series given by

Z3/2(τ, τ̄ ) =
∑

(m,n)6=(0,0)

(Im τ)3/2

|mτ + n|3

= 2ζ(3)e−3φ/2 +
2π2

3
eφ/2

+ 4π
∑

k 6=0

µ(k)e−2π(|k|e−φ−ikC(0))k1/2

(

1 +
3

16π|k|e
φ + . . .

)

, (2.6)

with µ(k) =
∑

d|k d−2. Here τ , which should not be confused with the modular parameter

in one-loop amplitudes, is the usual combination of the Ramond-Ramond scalar and the

dilaton, τ = C(0)+ie−φ. The expansion shows that there are no perturbative contributions

beyond one-loop, but that there are an infinite sum of single D-instanton terms, with

characteristic e1/g behaviour, which were first studied in [2].

Four-particle amplitudes containing NS ⊗NS two-forms were first studied in [5]. The

result is identical to (2.1) but with the relevant replacements of hab by Bab in K̂. Amplitudes

with an odd number of B fields trivially vanish since K̂ changes sign under (ar, br) ↔
(cr, dr). [5], where terms involving dilatons were also studied, showed that the lowest-order

contributions to the effective action can be written exactly as in (2.4) and (2.5) but with

Rabcd everywhere replaced by

R̄abcd = Rabcd +
1

2
e−φ/2∇[aHb]cd −

1

4
g[a[c

∇b]∇d]
φ, (2.7)
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where Habc ≡ 3∇[aBbc] is the field strength associated with Bab. This leads to various new

terms such as R2(∇H)2, (∇H)4 and R3∇∇φ. The vanishing of terms involving an odd

number of H fields follows from parity.1

3. The B
2
h

3 amplitude and its low-energy expansion

Using the light-cone gauge Green-Schwarz formalism, we now calculate similar one-loop

amplitudes but with five rather than four states. The case of five gravitons was considered

in [1]. Here we will replace some of these gravitons by NS ⊗NS two-forms. It is no longer

true that amplitudes with an odd number of B fields, such as Bh4, will vanish. However,

the non-zero piece will be entirely contained in the ǫ10t8 part; the t8t8 and ǫ10ǫ10 terms

will still vanish. Since, as mentioned above, the ǫ10t8 pieces cannot be seen using this

formalism, we instead choose to focus on the B2h3 and B4h cases.

The B2h3 amplitude proceeds exactly as in the five-graviton case in [1], simply with h1

and h2 replaced by B1 and B2. Here we only sketch the calculation and refer the reader to [1]

for details. Let the two-forms have polarisations B1, B2 and momenta k1, k2 respectively,

and let the gravitons have polarisations h1, h2, h3 and momenta k3, k4, k5 respectively. The

two-forms differ from the gravitons in that their polarisations are antisymmetric rather

than symmetric. Both the graviton and NS ⊗ NS two-form vertex operators are given

by [16]

Vh,B(k, z) = ζac(∂Xa(z) − Rab(z)kb)(∂̄Xc(z) − R̃cd(z)kd)eik·X(z), (3.1)

where ζab is the polarisation and Rab(z) ≡ 1
4S(z)Aγab

ABSB(z). Motivated by the usual

prescription for calculating GS amplitudes, explained in [6], we consider

AB2h3 =

∫

d2τ

∫ 4
∏

r=1

d2vr

∫

d10p Tr
(

VB(k1, ρ1)VB(k2, ρ2)Vh(k3, ρ3) · · ·wL0w̄L̃0

)

, (3.2)

where vr = ln ρr/2πi, τ = ln w/2πi, and the trace is over all α, α̃, S and S̃ modes. The

trace over S vanishes unless there are at least eight S0 zero modes (and similarly for S̃)

and so there are only three types of term to consider: one term containing R5R̃5, ten terms

containing ∂XR4R̃5 or R5∂̄XR̃4, and twenty-five terms containing ∂XR4∂̄XR̃4.

If we suppress the polarisation tensors and perform the traces and p-integral, then the

R5R̃5 term can be evaluated as

∫

d2τ

(Im τ)5

∫ 4
∏

r=1

d2vr

∏

r<s

(χrs)
1
2
kr·kskb1

1 · · · kb5
5 kd1

1 · · · kd5
5

×
(

ta1b1a2b2···
10 +

∑

r<s

t̄ arbrasbs···
10 η′(vrs, τ)

)(

tc1d1c2d2···
10 +

∑

r<s

t̄ crdrcsds···
10 η̄′(vrs, τ)

)

, (3.3)

where, for example, t a2b2a4b4···
10 is shorthand for t a2b2a4b4a1b1a3b3a5b5

10 . Here t10 and t̄10 are ten-

index tensors, which can both be written as sums of t8δ tensors, as given in the appendix

1This only applies to t8t8 and ǫ10ǫ10 terms. Terms involving a single ǫ10 are not forbidden, such as the

B ∧ t8R
4 term found in IIA [4].
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of [1]. The function η′(vrs, τ) can be expressed in terms of Jacobi theta functions via

πi(2η′(v, τ) + 1) = −θ′1(v, τ)/θ1(v, τ). Similarly, the ∂X(ρ1)R
4R̃5 term gives

∫

d2τ

(Im τ)5

∫ 4
∏

r=1

d2vr

∏

r<s

(χrs)
1
2
kr·kskb2

2 · · · kb5
5 kd1

1 · · · kd5
5

× ta2b2···a5b5
8

(

∑

r 6=1

ka1
r η(vr1, τ)

)(

tc1d1c2d2···
10 +

∑

r<s

t̄ crdrcsds···
10 η̄′(vrs, τ)

)

, (3.4)

where η(v, τ) = −η′(v, τ) + Im v
Im τ − 1

2 . Other ∂XR4R̃5 terms and the R5∂̄XR̃4 terms are

given by similar expressions. Finally, evaluating the traces and p-integral for, for example,

∂X(ρ1)R
4∂̄X(ρ2)R̃

4 gives

∫

d2τ

(Im τ)5

∫ 4
∏

r=1

d2vr

∏

r<s

(χrs)
1
2
kr·kskb2

2 · · · kb5
5 kd1

1 kd3
3 · · · kd5

5 (3.5)

×





5
∑

r=2

ka1
r η(vr1, τ)

5
∑

s=1,s 6=2

kc2
s η̄(vs2, τ) − 2δa1c2Ω̂(v12, τ)



 ta2b2a3b3···
8 tc1d1c3d3···

8 ,

where Ω̂(v, τ) = −1/(2πIm τ). Again there are similar expressions for the other

∂XR4∂̄XR̃4 terms.

Using various identities given in the appendix of [1], both t10 and t̄10 can be eliminated

in favour of t8 tensors. This allows the full amplitude to be packaged together as

AB2h3,t8t8 = B1
a1c1B

2
a2c2h

1
a3c3h

2
a4c4h

3
a5c5

∫

d2τ

(Im τ)5

∫ 4
∏

r=1

d2vr

∏

r<s

(χrs)
1
2
kr·ks (3.6)

×
(

∑

r<s

η(vrs, τ)Ars

∑

r<s

η̄(vrs, τ)Ārs +
∑

r<s

Ω̂(vrs, τ)Crs

)

,

where the indices on Ars, Ārs and Crs have been suppressed for brevity,

A12 = ka2
1 (k1 + k2)

bkb3
3 kb4

4 kb5
5 ta1ba3b3a4b4a5b5

8

− ka1
2 (k1 + k2)

bkb3
3 kb4

4 kb5
5 ta2ba3b3a4b4a5b5

8

− δa1a2kb1
1 kb2

2 kb3
3 kb4

4 kb5
5 tb1b2a3b3a4b4a5b5

8

− k1 · k2 kb3
3 kb4

4 kb5
5 ta1a2a3b3a4b4a5b5

8 (3.7)

and

C12 = −4 δa1c2kb2
2 kb3

3 kb4
4 kb5

5 kd1
1 kd3

3 kd4
4 kd5

5 ta2b2a3b3a4b4a5b5
8 tc1d1c3d3c4d4c5d5

8 . (3.8)

Ā12 is the same as A12 but with cr replacing ar. The other Ars and Crs are similar but

with the relevant permutations of the momenta and polarisation indices. The amplitude

contains massless poles in kr · ks which originate from the vrs integral over |η(vrs, τ)|2.

– 5 –
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There is no known way of explicitly evaluating the integrals over vr and τ . However,

it is still possible to expand them for small values of α′. Since we are only interested in the

expansion to lowest order, there are only two types of integral that must be considered,2

K =

∫

d2τ

(Im τ)5

∫ 4
∏

r′=1

d2vr′
∏

r′<s′

(χr′s′)
1
2
kr′ ·ks′ Ω̂rs,

Irs =

∫

d2τ

(Im τ)5

∫ 4
∏

r′=1

d2vr′
∏

r′<s′

(χr′s′)
1
2
kr′ ·ks′ |ηrs|2, (3.9)

where Ω̂rs ≡ Ω̂(vrs, τ) and similarly for ηrs. Since Ω̂rs is independent of vrs, we write K

without any subscripts. Using the definition of Ω̂rs, the lowest-order expansion of K is

easily found by setting kr′ · ks′ to zero for all r′, s′,

K|α′0 = − 1

2π

∫

d2τ

(Im τ)2
= −1

6
. (3.10)

At lowest order the expansion of Irs is a pole term and so it cannot be studied simply by

setting kr′ ·ks′ = 0. However, it is clear that the pole originates from the corner of the inte-

gration region where vr → vs. Then the pole can be extracted by writing vrs = |v|eiθ and

integrating over a small circle around vrs = 0. From the small v behaviour of χrs and ηrs,

χ(v, τ) ∼ 2π|v|, η(v, τ) ∼ − i

2πv
, (3.11)

it can easily be shown that in the small kr · ks limit,

Irs ∼
1

kr · ks
· 1

π

∫

d2τ

(Im τ)5

∫ 4
∏

r′=2

d2vr′
∏

r′<s′

1→2

′
(χr′s′)

1
2
k′

r·k
′

s , (3.12)

where the prime on the product indicates that (r′, s′) = (1, 2) is not to be included, and

1 → 2 means that v1′ is to be replaced by v2′ everywhere within the product. The τ and

vr′ integrals are exactly those that appear in the four-graviton amplitude (2.1), which of

course must be the case from unitarity, and so their low-energy expansion begins with π/3

as in (2.3), giving

Irs|α′−1 =
1

6α′kr · ks
, (3.13)

where α′ has been reinstated using 2α′ = 1. So the lowest-order expansion of the

amplitude (3.6) is given by

AB2h3,t8t8 |α′4 =
24α′4

6
B1

a1c1B
2
a2c2h

1
a3c3h

2
a4c4h

3
a5c5

∑

r<s

(

2

kr · ks
|Ars|2 − Crs

)

, (3.14)

where again we have reinstated α′.

2The other possible integrals all vanish at lowest order in α
′.
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Unlike the five-graviton version in [1], various terms within the |A12|2, |A1n|2 and |A2n|2
parts, with n = 3, 4, 5, vanish due to identities such as ka

1kb
1B2ab = 0 and Bab

1 h1ab = 0. For

example, of the twenty-one terms in |Ars|2, only fifteen survive in the |A12|2 part,

1

k1 · k2

(

− 2k1ek
b1
1 kd1

1 Ba1
1 fkf

2Bec1
2 − 2k1ek

b1
1 Ba1

1 fkf
2 kd1

2 Bec1
2 − 2k1ek

b1
1 kc1

1 Ba1
1 fkd1

2 Bef
2

− 2k1ek
d1
1 Ba1

1 fkf
2kb1

2 Bec1
2 − 2k1eB

a1
1 fkf

2 kb1
2 kd1

2 Bec1
2 − 2k1ek

c1
1 Ba1

1 fkb1
2 kd1

2 Bef
2

+ 2kb1
1 kc1

1 B1efkd1
2 ke

2B
a1f
2 + 2kc1

1 B1efkb1
2 kd1

2 ke
2B

a1f
2 + ka1

1 kc1
1 B1efkb1

2 kd1
2 Bef

2

)

+

(

− 2k1ek
b1
1 Ba1c1

1 Bed1
2 − 2k1eB

a1c1
1 kb1

2 Bed1
2 + 2kb1

1 B1e
c1ke

2B
a1d1
2

+ 2B1e
c1ke

2k
b1
2 Ba1d1

2 + 2ka1
1 B1e

c1kb1
2 Bed1

2 + k1eB
a1c1
1 ke

2B
b1d1
2

)

, (3.15)

which is all multiplied by 24α′4

3 t8 a1b1···t8 c1d1···k
a2
3 kc2

3 hb2d2
1 ka3

4 kc3
4 hb3d3

2 ka4
5 kc4

5 hb4d4
3 . Similarly,

for the |A13|2 part only seventeen terms remain,

1

k1 · k3

(

+ k1ek1fkb1
1 kd1

1 Ba1c1
1 hef

1 + 2k1ek1fkb1
1 Ba1c1

1 kd1
3 hef

1 − 2k1ek
b1
1 kd1

1 Ba1
1 fkf

3 hec1
1

− 2k1ek
b1
1 Ba1

1 fkf
3 kd1

3 hec1
1 − 2k1ek

b1
1 kc1

1 Ba1
1 fkd1

3 hef
1 + k1ek1fBa1c1

1 kb1
3 kd1

3 hef
1

− 2k1ek
d1
1 Ba1

1 fkf
3 kb1

3 hec1
1 − 2k1eB

a1
1 fkf

3 kb1
3 kd1

3 hec1
1 − 2k1ek

c1
1 Ba1

1 fkb1
3 kd1

3 hef
1

+ 2kb1
1 kc1

1 B1efkd1
3 ke

3h
a1f
1 + 2kc1

1 B1efkb1
3 kd1

3 ke
3h

a1f
1

)

+

(

− 2k1ek
b1
1 Ba1c1

1 hed1
1 − 2k1eB

a1c1
1 kb1

3 hed1
1 + 2kb1

1 B1e
c1ke

3h
a1d1
1

+ 2B1e
c1ke

3k
b1
3 ha1d1

1 + 2ka1
1 B1e

c1kb1
3 hed1

1 + k1eB
a1c1
1 ke

3h
b1d1
1

)

, (3.16)

which is all multiplied by 24α′4

3 t8 a1b1···t8 c1d1···k
a2
2 kc2

2 Bb2d2
2 ka3

4 kc3
4 hb3d3

2 ka4
5 kc4

5 hb4d4
3 . These ex-

pressions will be important for matching with the field theory diagrams in the next section.

4. Consequences for the effective action

The expanded amplitude in (3.14) can now be compared with the same amplitude calcu-

lated from known quartic terms in the effective action, such as R4 and R2(∇H)2. These

terms, however, will not account for the full amplitude, and the remainder will require new

H2R3 terms.

At lowest order the effective action consists of the usual supergravity terms, which in

Einstein frame are given by

Sα′0 =

∫

d10x
√−g

(

R − 1

12
e−φH2 − 1

2
(∂φ)2

)

. (4.1)

Einstein frame is used to avoid mixing between the dilaton and graviton propagators. It

is important to include the dilaton since there are diagrams where a dilaton propagates as

– 7 –
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an intermediate particle. As mentioned in section 2, the first correction to Sα′0 occurs at

order α′3. For our purposes, only the one-loop correction is relevant,

Sα′3,1−loop =
2π2

3
α′3

∫

d10x
√−g eφ/2 ta1b1···

8 tc1d1···
8 R̄a1b1c1d1 · · · R̄a4b4c4d4 , (4.2)

where R̄abcd is given in (2.7). In particular, for matching with the B2h3 amplitude, only

the t8t8R
4, t8t8R

2(∇H)2 and t8t8R
3(∇∇φ) terms are required.

4.1 Expansion of various tensors

Before we can expand the terms in Sα′0 and Sα′3 , we need the expansions of the various

fields and tensors involved. Consider a small fluctuation of the metric about the Minkowski

metric, gab = ηab+κhab, where κ is presumed small. In subsequent expressions we will drop

factors of κ since they can easily be reinstated. The expansions of the Riemann tensor, the

Ricci scalar and the t8 tensor were given in [1] and we refer the reader there for details.

At most we require the expansion of the Riemann tensor, Rabcd, to second order in h. As

explained in [1], since we are only concerned with five-point amplitudes, a Riemann tensor

expanded to second order is guaranteed to be multiplied by a tensor which is antisymmetric

in a ↔ b and c ↔ d, and symmetric in (a, b) ↔ (c, d). With this understanding, the

expansion to second order simplifies to

Rabcd = 2∂a∂chbd + ∂ah
e

c ∂dhbe + ∂ah
e

c ∂bhde − 2∂ehac∂bhde +
1

2
∂ehac∂ehbd. (4.3)

The expansion of the Ricci scalar begins

R = �h − ∂a∂bh
ab

− hab(�hab + ∂a∂bh − 2∂a∂
chbc)

− 3

4
∂ahbc∂

ahbc +
1

2
∂ahbc∂

bhac + ∂ahab∂ch
bc − ∂ahab∂

bh +
1

4
∂ah∂ah, (4.4)

where h = ha
a. Although we actually need the expansion to third order in h, we do not

need the explicit expression and so there is no need to write it here.

Since the t8 tensor is formed from products of the metric, it is important to also consider

its expansion. As for the Riemann tensor, since whenever t8 is expanded to first order it is

always multiplied by tensors which are symmetric under, for example, (a, b) ↔ (c, d), the

expansion reduces to

tabcdefgh
8 = tabcdefgh

8 − 2(hi
atibcdefgh

8 + hi
btaicdefgh

8 ), (4.5)

where t8 is formed out of products of the curved metric, g, and t8 is the equivalent expression

formed out of the Minkowski metric, η.

The expansion of H2 is achieved using

H2 ≡ gadgbegcfHabcHdef ≡ 32gadgbegcf∇[aBbc]∇[dBef ] (4.6)
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and remembering that it is also necessary to expand the covariant derivatives. It is readily

found that, up to first order in h,

2H2 = ∂aBbc(∂
aBbc + 2∂bBca)

− had(∂aBbc∂dB
bc − 4∂aBbc∂

bBd
c + 2∂bBac∂

bBd
c − 2∂bBac∂

cBd
b). (4.7)

Since we need the expansion of Sα′3 up to terms involving five fields, we require the

expansion of ∇[aHb]cd up to first order in h. The zeroth order contribution is trivial and the

first order terms originate from expanding the Christoffel symbols within the derivative.

When ∇[aHb]cd is expanded to first order it is assured of being multiplied by an expression

which is manifestly antisymmetric in a ↔ b, antisymmetric in c ↔ d, and antisymmetric

in (a, b) ↔ (c, d).3 With the understanding that ∇[aHb]cd is multiplied by a tensor with

such symmetries, the expansion simplifies and, up to first order in h, can be written as

1

2
∇[aHb]cd = ∂a∂cBdb + ∂ah

e
c ∂dBbe + ∂ah

e
c ∂bBed

− ∂ehac∂bBed − ∂ah
e

c ∂eBbd +
1

2
∂ehac∂eBbd, (4.8)

which, although similar to the expansion of the Riemann tensor, differs due to the different

symmetries of hab and Bab, and the missing factor of two in the zeroth order term.

4.2 Propagators

From (4.1) we can derive the propagators for the graviton, the NS⊗NS two-form and the

dilaton. Since the dilaton is a scalar, its propagator is simply D = 1/k2. For the graviton

we consider the Einstein-Hilbert term which, after dropping total derivatives, is given up

to second order by,

Sα0,R =
1

4

∫

d10x (∂ahbc∂
ahbc − ∂ah∂ah + 2∂ah∂bh

ab − 2∂ahbc∂
bhac), (4.9)

which is invariant under the gauge transformation

hab → hab + ∂aζb + ∂bζa, (4.10)

where ζa is an arbitrary one-form field. After fixing the gauge invariance using the de

Donder gauge, ∂ahab = 1
2∂bh, the graviton propagator can easily be shown to be

Dab,cd =
ηacηbd + ηadηbc − 1

4ηabηcd

k2
. (4.11)

To find the propagator for the two-form we first fix the gauge invariance, Bab →
Bab + ∇[aζb], by adding the gauge fixing term λ∂aB

ac∂bB
b
c to the action. Then, after

removing a total derivative, the part of (4.1) quadratic in Bab becomes

Sα′0,H2 = − 1

24

∫

d10x(∂aBbc∂
aBbc − 2Bbc∂a∂

bBca + 24λBac∂a∂bB
b
c). (4.12)

3This antisymmetry follows since, from the Bianchi identity, ∇[aHb]cd = −∇[cHd]ab.
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Figure 1: Field theory vertices relevant for the B2h3 amplitude. From left to right: a three-vertex

from R, two three-vertices from e−φH2, and three four-vertices and a five-vertex from R̄4.

Now we write the integrand as BabV
abcdBcd and try to invert V abcd, by which we mean

solve D′
ab,cdV

cd
ef = η[a|e|ηb]f . This can only be achieved for the particular choice λ = − 1

12 ,

after which we find

D′
ab,cd =

ηacηbd − ηadηbc

k2
. (4.13)

4.3 Evaluation of diagrams

The expansions of Sα′0 and Sα′3 lead to several three-, four- and five-vertices which appear

in B2h3 diagrams. Firstly, the Einstein-Hilbert term contains the usual three-graviton

vertex. Further, the kinetic term for the NS ⊗ NS two-form, e−φH2 = H2 − φH2 + . . .,

gives a BBh three-vertex from the expansion of the first term, and a BBφ three-vertex from

the second term. The quartic one-loop term, Sα′3 , leads to three relevant four-vertices: a

four-graviton vertex, a three-graviton and one-dilaton vertex, and a two-graviton and two-

B-field vertex. Finally, the R2(∇H)2 term in Sα′3 generates a BBhhh five-vertex. These

vertices are shown in figure 1 where a vertex surrounded by a circle originates from the one-

loop Sα′3 term, whereas a vertex without a circle originates from the tree-level Sα′0 term.

Unlike the five-graviton amplitude in [1] where there were only two field theory dia-

grams to calculate, there are now five separate diagrams to evaluate (figure 2). Diagrams

(a) and (b) both contain internal states carrying momenta
√
−2k1 · k2, the first with an

intermediate graviton and the second with an intermediate dilaton. Diagrams (c) and (d)

are similar: the first contains an intermediate B-field carrying momenta
√
−2kr · ks and the

second contains an intermediate graviton carrying momenta
√
−2ks · ks′ , where r ∈ {1, 2}

and s, s′ ∈ {3, 4, 5}. Diagram (e) is a contact diagram formed from a single five-vertex.

All these diagrams must be evaluated and subtracted from the B2h3 amplitude, before the

remaining terms can be covariantised.

Diagram (a) consists of a BBh three-vertex connected via a graviton propagator to a

four-graviton one-loop vertex and can be evaluated as follows. The three-vertex is found

from (4.7) and first must be contracted into the two on-shell B-fields, B1 and B2. The two

free indices are then contracted with the graviton propagator (4.11), before multiplying by

the four-graviton vertex derived from t8t8R
4. Finally, the remaining external legs contract
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h
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φ
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Figure 2: Field theory diagrams contributing to the B2h3 amplitude.

into the three gravitons, h3, h4 and h5. After some work, the result simplifies to

B

B

h
h

h

h = t8 a1b1···t8 c1d1···k
a2
3 kc2

3 hb2d2
1 ka3

4 kc3
4 hb3d3

2 ka4
5 kc4

5 hb4d4
3

×
(

1

k1 · k2

(

− 2k1ek
b1
1 kd1

1 Ba1
1 fkf

2 Bec1
2 − 2k1ek

b1
1 Ba1

1 fkf
2kd1

2 Bec1
2

− 2k1ek
b1
1 kc1

1 Ba1
1 fkd1

2 Bef
2 − 2k1ek

d1
1 Ba1

1 fkf
2kb1

2 Bec1
2

− 2k1eB
a1
1 fkf

2kb1
2 kd1

2 Bec1
2 − 2k1ek

c1
1 Ba1

1 fkb1
2 kd1

2 Bef
2

+ 2kb1
1 kc1

1 B1efkd1
2 ke

2B
a1f
2 + 2kc1

1 B1efkb1
2 kd1

2 ke
2B

a1f
2

+ ka1
1 kc1

1 B1efkb1
2 kd1

2 Bef
2

− 3

4
(k1 + k2)

a1(k1 + k2)
c1k1eB1fgk

g
2Bfe

2 ηb1d1

)

+ (k1 + k2)
a1(k1 + k2)

c1

(

2B
(d1

1e B
b1)e
2 +

3

8
B1efBef

2 ηb1d1

))

, (4.14)

where all terms apart from those in the last line are poles. The penultimate line is a pole

containing an ηab factor. Since there are no such terms in the B2h3 amplitude, this must

cancel with an equivalent term from another diagram.

Diagram (b) is similar in spirit to diagram (a), but with a dilaton as the intermediate

particle. As such, the simpler dilaton propagator is used to contract the two vertices. The

three-vertex now originates from the φH2 term in Sα′0 . The diagram is easily evaluated as

B

B
h

h

h
φ = t8 a1b1···t8 c1d1···k

a2
3 kc2

3 hb2d2
1 ka3

4 kc3
4 hb3d3

2 ka4
5 kc4

5 hb4d4
3

× (k1 + k2)
a1(k1 + k2)

c1ηb1d1

(

3

4k1 · k2
k1eB1fgk

g
2B

fe
2 − 3

8
B1efBef

2

)

. (4.15)

The pole term has exactly the correct form to cancel the pole containing ηab in the previous

diagram, and the second term exactly cancels the final term in (4.14). So the sum of

diagrams (a) and (b) is given by (4.14), but without the two terms containing ηab factors.
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Diagram (c) accounts for the poles where a B-field and a graviton are separated from

the other particles. Consider the particular case where the separated B-field is B1 with

momentum k1 and the separated graviton is h1 with momentum k3. We start from the BBh

three-vertex given by (4.7) and contract B1 and h1 into two of the legs. The remaining

leg is now connected by the two-form propagator (4.13) to a B2h2 four-vertex from the

expansion of t8t8R̄
4. Finally, the remaining three legs are contracted into B2, h2 and h3.

After simplifying the result we obtain

B

B
h

h

h B = t8 a1b1···t8 c1d1···k
a2
2 kc2

2 Bb2d2
2 ka3

4 kc3
4 hb3d3

2 ka4
5 kc4

5 hb4d4
3

×
(

1

k1 · k3

(

+ k1ek1fkb1
1 kd1

1 Ba1c1
1 hef

1 + 2k1ek1fkb1
1 Ba1c1

1 kd1
3 hef

1

− 2k1ek
b1
1 kd1

1 Ba1
1 fkf

3 hec1
1 − 2k1ek

b1
1 Ba1

1 fkf
3kd1

3 hec1
1

− 2k1ek
b1
1 kc1

1 Ba1
1 fkd1

3 hef
1 + k1ek1fBa1c1

1 kb1
3 kd1

3 hef
1

− 2k1ek
d1
1 Ba1

1 fkf
3 kb1

3 hec1
1 − 2k1eB

a1
1 fkf

3kb1
3 kd1

3 hec1
1

− 2k1ek
c1
1 Ba1

1 fkb1
3 kd1

3 hef
1 + 2kb1

1 kc1
1 B1efkd1

3 ke
3h

a1f
1

+ 2kc1
1 B1efkb1

3 kd1
3 ke

3h
a1f
1

)

+ 2(k1 + k3)
a1(k1 + k3)

c1B
[d1

1e h
b1]e
1

)

. (4.16)

Diagram (d) is almost identical to the pole diagram calculated in [1], which itself was

derived from a similar amplitude in [17], the only difference being the four-vertex. This

difference, however, is minimal since Rabcd and ∇[aHb]cd expanded to lowest order both

have the form 2∂a∂cXdb, where X is h and B respectively. As such, we can simply take the

result in [1] and replace the relevant gravitons by B-fields. Let the two gravitons which are

to the left of the propagator be h1 and h2 with momenta k3 and k4 respectively. Then

h

h

B

h

h B = t8 a1b1···t8 c1d1···k
a2
1 kc2

1 Bb2d2
1 ka3

2 kc3
2 Bb3d3

2 ka4
5 kc4

5 hb4d4
3

×
(

1

k3 · k4

(

+ k3ek3fkb1
3 kd1

3 ha1c1
1 hef

2 + 2k3ek3fkb1
3 ha1c1

1 kd1
4 hef

2

− 2k3ek
b1
3 kd1

3 ha1
1 fkf

4 hec1
2 − 2k3ek

b1
3 ha1

1 fkf
4kd1

4 hec1
2

− 2k3ek
b1
3 kc1

3 ha1
1 fkd1

4 hef
2 + k3ek3fha1c1

1 kb1
4 kd1

4 hef
2

− 2k3ek
d1
3 ha1

1 fkf
4 kb1

4 hec1
2 − 2k3eh

a1
1 fkf

4 kb1
4 kd1

4 hec1
2

− 2k3ek
c1
3 ha1

1 fkb1
4 kd1

4 hef
2 + kb1

3 kd1
3 h1efke

4k
f
4ha1c1

2

+ 2kb1
3 h1efke

4k
f
4kd1

4 ha1c1
2 + 2kb1

3 kc1
3 h1efkd1

4 ke
4h

a1f
2

+ h1efkb1
4 kd1

4 ke
4k

f
4 ha1c1

2 + 2kc1
3 h1efkb1

4 kd1
4 ke

4h
a1f
2

+ ka1
3 kc1

3 h1efkb1
4 kd1

4 hef
2

)

+ 2(k3 + k4)
a1(k3 + k4)

c1h
(d1

1e h
b1)e
2

)

. (4.17)
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Finally we calculate diagram (e), which involves expanding the R2(∇H)2 term from

the one-loop Sα′3 action,

∫

d10x
√−g ta1b1···

8 tc1d1···
8 ∇[a1

Hb1]c1d1
∇[a2

Hb2]c2d2
Ra3b3c3d3Ra4b4c4d4 , (4.18)

to third order in h and contracting all legs into the on-shell external states. Since at

lowest order Sα′3 contains two gravitons, it is necessary to expand to one order higher than

leading-order. The fifth graviton cannot originate from
√−g ≈ 1+ 1

2ha
a since the external

gravitons are traceless. However, it can originate either from a t8 tensor, from a Riemann

tensor or from a ∇[aHb]cd factor. After a slightly involved calculation which uses (4.5), (4.3)

and (4.8), we find

B
B

h
h

h
= 25t8 a1b1···t8 c1d1···k

a2
2 kc2

2 Bb2d2
2 ka3

4 kc3
4 hb3d3

2 ka4
5 kc4

5 hb4d4
3

×
(

+ kd1
1 Bb1

1 ek
a1
3 hc1e

1 + kb1
1 B d1

1e ka1
3 hc1e

1 − kb1
1 B d1

1e ke
3h

a1c1
1

− k1eB
b1d1
1 ka1

3 hc1e
1 +

1

2
k1eB

b1d1
1 ke

3h
a1c1
1 − k1ek

c1
1 Bb1d1

1 ha1e
1

− ka1
1 kc1

1 B1e
d1hb1e

1

)

+ 24t8 a1b1···t8 c1d1···k
a2
1 kc2

1 Bb2d2
1 ka3

2 kc3
2 Bb3d3

2 ka4
5 kc4

5 hb4d4
3

×
(

+ kd1
3 hb1

1 ek
a1
4 hc1e

2 + kb1
3 h d1

1e ka1
4 hc1e

2 − kb1
3 h d1

1e ke
4h

a1c1
2

− k3eh
b1d1
1 ka1

4 hc1e
2 +

1

2
k3eh

b1d1
1 ke

4h
a1c1
2 − k3ek

c1
3 hb1d1

1 ha1e
2

− ka1
3 kc1

3 h1e
d1hb1e

2 − hb1
1 ek

a1
4 kc1

4 hd1e
2 + hd1

1 ek
e
4k

a1
4 hb1c1

2

)

+ all permutations of (B1, B2) and of (h1, h2, h3). (4.19)

4.4 New H2R3 terms

All the above diagrams need to be subtracted from (3.14), before the remainder can be

covariantised to discover new H2R3 terms. The matching of the pole terms is guaranteed

from unitarity and indeed it is readily seen that the poles in the sum of (4.14) and (4.15)

match with the poles in (3.15), that the poles in (4.16) match with the poles in (3.16), and

that the poles in (4.17) match with the poles in the |Ars|2 part of (3.14) for r, s = 3, 4, 5.

This leaves the non-poles. In the amplitude these arise from both the |Ars|2 and Crs

terms. In the field theory they originate from both the non-pole terms in diagrams (a) to

(d) and from the entirety of the contact diagram. Consider first terms where two gravitons

are singled out. As explained in [1], it is always possible to single out such terms even

for the non-poles. Then the non-poles in (3.14) can easily be seen to match the non-poles

from (4.17) and the second half of (4.19). The matching is practically identical to that for

the lowest-order expansion of the five-graviton amplitude in [1].

Next consider terms where a B-field and a graviton are singled out. For concreteness

assume B1 and h1 to be the separated fields. Then we need to compare the final two lines
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in (3.16) and the C13 term with the final line in (4.16) and the first half of (4.19). After

doing so, not all terms cancel; the remainder are given by

2t8 a1b1···t8 c1d1···k
a2
2 kc2

2 Bb2d2
2 ka3

4 kc3
4 hb3d3

2 ka4
5 kc4

5 hb4d4
3

(

B1e
c1ke

3k
b1
3 ha1d1

1 − B1e
a1kb1

3 kd1
3 hc1e

1

)

.

(4.20)

Such terms are potentially problematic since they cannot be covariantised into new effective

action terms. An attempt to do so would generate terms of the form t8t8B(∇H)R3, but

such terms cannot appear since they are not gauge-invariant. So there must be a mechanism

whereby these extra terms cancel against other terms.

Finally consider terms where the two B-fields are singled out. This involves comparing

the final two lines in (3.15) and the C12 term with the penultimate term in (4.14); the con-

tact diagram (4.19) now makes no contribution. After cancelling the field theory diagrams,

the remaining terms are given by

2t8 a1b1···t8 c1d1···k
a2
3 kc2

3 hb2d2
1 ka3

4 kc3
4 hb3d3

2 ka4
5 kc4

5 hb4d4
3

×
(

+ B1e
c1ke

2k
b1
2 Ba1d1

2 − B1e
a1kb1

2 kd1
2 Bc1e

2 − k1ek
b1
1 Ba1c1

1 Bed1
2

− kb1
1 kd1

1 B1e
a1Bc1e

2 − k1eB
a1c1
1 kb1

2 Bed1
2 + kb1

1 B1e
c1ke

2B
a1d1
2

+ ka1
1 B1e

c1kb1
2 Bed1

2 − kd1
1 B1e

a1kb1
2 Bc1e

2 +
1

2
k1eB

a1c1
1 ke

2B
b1d1
2

)

. (4.21)

Not all of these terms can be generated from new terms in the effective action: those terms

with ‘naked’ B-fields, i.e. those without any momenta multiplying them such as the B1 in

the first term, cannot be covariantised in a gauge-invariant manner. The resolution is that

the first four terms in (4.21) and the two terms in (4.20) actually cancel when summed

over all permutations of the external states. The proof of this uses an identity between

four t̄10 tensors which is shown in the appendix of [1]. Consider

(t̄ABa1b1a2b2a3b3a4b4
10 + t̄ABa2b2a1b1a3b3a4b4

10 + t̄ABa3b3a1b1a2b2a4b4
10 + t̄ABa4b4a1b1a2b2a3b3

10 )

× tc1d1c2d2c3d3c4d4
8 B1ABk2a1k2c1B2b1d1k3a2k3c2h1b2d2k4a3k4c3h2b3d3k5a4k5c4h3b4d4 , (4.22)

which vanishes due to identity (A.4) in [1]. By expanding each of the t̄10 tensors as a sum

of four t8 tensors as in (A.2) in [1], it is easy to show that this gives the first two terms

in (4.21) and the two terms in (4.20) summed over all permutations of the gravitons. The

final two ‘naked’ B-terms in (4.21) cancel with the B1 ↔ B2 equivalent of (4.20), which is

shown by considering the above identity but with B1 and B2 interchanged.

This leaves the final five terms in (4.21) and we can now ask what term or terms in

the effective action might give rise to them. By considering

α′3

∫

d10x
√−g ta1b1a2b2a3b3a4b4

8 tc1d1c2d2c3d3c4d4
8 Ha1c1eHb1d1

eRa2b2c2d2Ra3b3c3d3Ra4b4c4d4

(4.23)

it is easy to see that, at lowest order in h, exactly these five extra terms are generated and

this then is our required new term to account for the B2h3 one-loop amplitude.

This term agrees with the conjecture in [18] (see their (2.11)), but disagrees with

the covariant RNS calculation in [3], where it is claimed that the t8t8 part of the H2R3
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Figure 3: Field theory diagrams contributing to the B4h amplitude: (a)-(c) pole diagrams, and

(d) a contact diagram.

term is as above but with the H2 part replaced by Ha1b1eHc1d1
e. We believe the difference

arises because [3], as indeed acknowledged there, makes no attempt to subtract field theory

diagrams due to known quartic terms in the effective action. It is also worth noting that

our result disagrees with the light-cone gauge GS calculation in [19].

5. The B
4
h amplitude

It is relatively straightforward to extend the whole of the previous analysis to the B4h

amplitude. In calculating the B2h3 amplitude in section 3 (and in the five-graviton case

in [1]) at most two vertex operators give ∂Xa and ∂̄Xa terms, with the remaining three

operators giving RabkbR̃cdkd factors. These three factors simply lead to kbkdXac factors

in the amplitude, where X is either h or B, and so the difference between B2h3 and B4h

is minimal. Let the four NS ⊗ NS two-forms be B1, B2, B3, B4 with momenta k1, k2,

k3, k4 respectively, and let the graviton be labelled h1 and have momentum k5. Then

the B4h amplitude is given by (3.6) but with h1h2h3 replaced by B3B4h1. Similarly, the

lowest-order expansion is given by the same replacement in (3.14).

There is also little difference between the effective action diagrams for B2h3 and B4h.

This follows since, as explained in [1], all diagrams, even the contact diagram, contain

exactly two particles which play a privileged rôle. The remainder merely act as spectators,

appearing as Rabcd or ∇[aHb]cd factors expanded to leading order. So there is little point

explicitly evaluating the new diagrams. However, for completeness, the relevant diagrams

are shown in figure 3 where several new vertices are required: the four-vertex from the

lowest-order expansion of the (∇H)4 term in (4.2), the equivalent vertex from the Rφ(∇H)2

term, and the five-vertex from the expansion of (∇H)4 to first order in h.

The poles in all channels match in an identical manner to that for the B2h3 case and

the ‘naked’ B-fields cancel using the same t̄10 identity. This leaves the same five kBkB

terms as for B2h3, but now with two of the kakchbd factors replaced by kakcBbd. So the

new term required in the effective action is given by

α′3

∫

d10x
√−g ta1b1a2b2a3b3a4b4

8 tc1d1c2d2c3d3c4d4
8

× Ha1c1eHb1d1
e∇[a2

Hb2]c2d2
∇[a3

Hb3]c3d3
Ra4b4c4d4 . (5.1)

It is notable that, as in [5] where the quartic effective action including B-fields was
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written by generalising R4 to R̄4, we can write both the H2R3 and H4R terms as

α′3

∫

d10x
√−g ta1b1···a4b4

8 tc1d1···c4d4
8 Ha1c1eHb1d1

eR̄a2b2c2d2R̄a3b3c3d3R̄a4b4c4d4 , (5.2)

where

R̄abcd = Rabcd +
1

2
e−φ/2∇[aHb]cd. (5.3)

In fact, as in (2.7), [5] also includes an additional term in R̄abcd which involves the dilaton.

It is interesting to conjecture that the same may also be true here. This predicts various new

terms, such as H2R2(∇∇φ) and H4(∇∇φ)3. To confirm such terms it would be necessary

to calculate five-particle amplitudes involving dilatons, such as the B2h2φ amplitude.

6. The ǫ8ǫ8 terms

So far we have only considered t8 tensors, where t8 is formed out of products of delta

symbols [6] and which originate from a trace over four Rab
0 tensors. This trace, however,

also contains an ǫ8 tensor,

Tr(Rab
0 Rcd

0 Ref
0 Rgh

0 ) = ±1

2
ǫabcdefgh
8 − 1

2
δacδbdδegδfh + · · ·

≡ ±1

2
ǫabcdefgh
8 + tabcdefgh

8 , (6.1)

with the ± sign depending on the SO(8) chirality. Although momentum conservation

requires all terms involving ǫ8 to vanish in massless NS ⊗ NS four-point amplitudes, this

is no longer the case for amplitudes involving five states. This leads to various terms in

the effective action such as ǫ10ǫ10R
4 and B ∧ t8R

4. Since the GS light-cone formalism

requires k+ = 0 for all external states, the B ∧ t8R
4 term will not be visible. However,

terms with at least two contractions between the epsilon tensors should be visible. The

ǫ10ǫ10R
4 term was studied in [1]; here we study equivalent terms involving B-fields, such

as ǫ10ǫ10(∇H)2R2 and ǫ10ǫ10H
2R3.

All t8 factors in the B2h3 amplitude originate from a trace over four Rab
0 and so ǫ8 terms

can be included simply by replacing t8 by (6.1). Since the identities used to reach (3.6)

continue to hold for the ǫ8 terms [1], the final amplitude expanded to lowest order is given

by (3.14) but with every occurrence of t8 in (3.7) and (3.8) replaced by 1
2ǫ8 + t8. As a

consequence of the greater antisymmetry of ǫ8, all but the final line of Ars vanish and so

the ǫ8 parts of the amplitude contain no massless poles.

In addition to the t8t8 terms studied above, the full amplitude now contains t8ǫ8 and

ǫ8ǫ8 terms. The t8ǫ8 must vanish since they do not respect the parities of either the IIA

or IIB theory. For the five-graviton amplitude at lowest order in α′ this was demonstrated

explicitly in [1]; the equivalent statement for B2h3 can be shown in an identical manner. So

the full amplitude reduces to (t8t8 ± 1
4ǫ8ǫ8) multiplied by the usual kinematic factors and

integrals, with +/− for IIB/IIA respectively. As discussed in [1], this calculation appears

to give the wrong sign for the ǫ8ǫ8 terms, as can be seen by comparing with the known

ǫ10ǫ10R
4 term in the effective action. We leave this issue unresolved and instead conjecture

that +/− should refer to IIA/IIB.
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As with the t8t8 terms, before any ǫ10ǫ10H
2R3 can be determined it is important to

subtract diagrams due to quartic terms in the effective action. For the pure Riemann term

it is known that the one-loop t8t8R
4 should be extended to

α′3

∫

d10x
√−g e

1
2
φ

(

t8t8 ±
1

8
ǫ10ǫ10

)

R4, (6.2)

with +/− for IIB/IIA respectively [20, 21]. It is natural to conjecture that the t8t8R̄
4 term

in (4.2) is extended in a similar way to (t8t8 ± 1
8ǫ10ǫ10)R̄

4, giving the new terms

±1

8
α′3

∫

d10x
√−g ǫ a1b1a2b2a3b3a4b4

10 mn ǫmnc1d1c2d2c3d3c4d4
10 R̄a1b1c1d1 · · · R̄a4b4c4d4 . (6.3)

The following analysis will confirm this for a subset of these terms, including ǫ10ǫ10(∇H)4

and ǫ10ǫ10R
2(∇H)2.

The expansion of (6.3) around Minkowski space proceeds exactly as in section 4. The

only new ingredient is the expansion of the ǫ10ǫ10 factor. As shown in [1], with the under-

standing that ǫ10ǫ10 is always multiplied by a tensor which is symmetric under the inter-

change of pairs of adjacent indices, i.e. under (ar, br) ↔ (as, bs), then to first order in h,

ǫ10 mn
a1b1···a4b4ǫ10

mnc1d1···c4d4 → −2ǫa1b1···a4b4
8 ǫc1d1···c4d4

8 (6.4)

+ 8(hi
a1ǫib1···a4b4

8 ǫc1d1···c4d4
8 + hi

b1ǫa1i···a4b4
8 ǫc1d1···c4d4

8 ).

Here ǫ10ǫ10 are ‘curved’ epsilon tensors which can be rewritten as a sum of products of the

metric g, and ǫ8ǫ8 are ‘flat’ epsilon tensors which can be rewritten using flat metrics η.

Due to the extra antisymmetry of the epsilon tensor, the four-vertex from (6.3) vanishes

and, as a consequence, the ǫ10ǫ10-equivalents of diagrams 2(a)-(d) all vanish, leaving only

diagram 2(e). This tallies with the lack of massless poles in the ǫ8ǫ8 part of the amplitude.

However, since the expansion of ǫ10ǫ10 is so similar to the expansion of t8t8, it is prudent

to ignore this fact. Then the subtraction of the field theory diagrams from the amplitude

proceeds exactly as for the t8t8 terms.

After subtracting all diagrams and again using (4.22), but with t8 replaced by ǫ8,

it is the same five terms in the ǫ8ǫ8-equivalent of (4.21) which remain, leading to two

conclusions. Firstly, since the field theory diagrams which must be subtracted involve the

ǫ8ǫ8BBhh and ǫ8ǫ8hhhφ vertices, we confirm the presence of both the ǫ10ǫ10R
2(∇H)2 and

ǫ10ǫ10R
3φ terms of (6.3). Secondly, analogous to (4.23), it is necessary to add the term

± 1

8
α′3

∫

d10x
√−g ǫ a1b1a2b2a3b3a4b4

10 mn ǫmnc1d1c2d2c3d3c4d4
10

× Ha1c1eHb1d1
eRa2b2c2d2Ra3b3c3d3Ra4b4c4d4 , (6.5)

where, as mentioned above, we switch the signs so that +/− applies to IIB/IIA respectively.

Since this has the same structure as the t8t8H
2R3 term, the full H2R3 term can be written

as the combination

α′3

∫

d10x
√−g

(

t8t8 ±
1

8
ǫ10ǫ10

)

H2R3, (6.6)
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where H2R3 is shorthand for the above tensor contractions. This mirrors the usual t8t8R
4

term, which is similarly generalised to (t8t8 ± 1
8ǫ10ǫ10)R

4.

The ǫ8 terms for the Bh4 amplitude work in an almost identical manner. The field

theory diagrams now contain two new vertices, the ǫ8ǫ8BBBB and ǫ8ǫ8hBBφ vertices.

From these we can confirm the presence of both the ǫ10ǫ10(∇H)4 and ǫ10ǫ10R(∇H)2φ

terms of (6.3). Further, the t8t8H
2(∇H)2R term needs to be supplemented by

± 1

8
α′3

∫

d10x
√−g ǫ a1b1a2b2a3b3a4b4

10 mn ǫmnc1d1c2d2c3d3c4d4
10

× Ha1c1eHb1d1
e∇[a2

Hb2]c2d2
∇[a3

Hb3]c3d3
Ra4b4c4d4 , (6.7)

and so, as with H2R3, the full H2(∇H)2R term packages together as α′3
∫

d10x
√−g (t8t8±

1
8ǫ10ǫ10)H

2(∇H)2R.

As mentioned in section 5, it is again notable that the full H2R3 and H2(∇H)2R terms

can both be written succinctly as the single term

α′3

∫

d10x
√−g

(

ta1b1···a4b4
8 tc1d1···c4d4

8 ± 1

8
ǫ a1b1···a4b4
10 mn ǫmnc1d1···c4d4

10

)

× Ha1c1eHb1d1
eR̄a2b2c2d2R̄a3b3c3d3R̄a4b4c4d4 , (6.8)

with R̄ given in (5.3).
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